Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(11): e0259045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34758046

RESUMEN

Decomposition is an essential ecosystem service driven by interacting biotic and abiotic factors. Increasing temperatures due to climate change can affect soil moisture, soil fauna, and subsequently, decomposition. Understanding how projected climate change scenarios will affect decomposition is of vital importance for predicting nutrient cycling and ecosystem health. In this study, we experimentally addressed the question of how the early stages of decomposition would vary along a gradient of projected climate change scenarios. Given the importance of biodiversity for ecosystem service provisioning, we measured the effect of invertebrate exclusion on red maple (Acer rubrum) leaf litter breakdown along a temperature gradient using litterbags in warming chambers over a period of five weeks. Leaf litter decomposed more slowly in the warmer chambers and in the litterbag treatment that minimized invertebrate access. Moreover, increasing air temperature reduced invertebrate abundance and richness, and altered the community composition, independent of exclusion treatment. Using structural equation models, we were able to disentangle the effects of average air temperature on leaf litter loss, finding a direct negative effect of warming on the early stages of decomposition, independent of invertebrate abundance. This result indicates that not only can climate change affect the invertebrate community, but may also directly influence how the remaining organisms interact with their environment and their effectiveness at provisioning ecosystem services. Overall, our study highlights the role of biodiversity in maintaining ecosystem services and contributes to our understanding of how climate change could disrupt nutrient cycling.


Asunto(s)
Biodiversidad , Calentamiento Global , Ácaros/fisiología , Neoptera/fisiología , Temperatura , Acer/fisiología , Animales , Nutrientes , Hojas de la Planta/fisiología , Suelo/química
2.
J Environ Qual ; 49(4): 933-944, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33016483

RESUMEN

When fertilizer phosphorus (P) is applied to soils, the P can run off fields and cause harmful algal blooms. Due to its chemistry, much of the added P that does not run off can bind to soil particles and become inaccessible to plants. In natural systems, microbial and faunal decomposers can increase soil P accessibility to plants. We tested the hypothesis that this may also be true in agricultural systems, which could increase P application efficiency and reduce runoff potential. We stimulated soil fauna with sodium (Na+ ) and microbes with carbon (C) by adding corn (Zea mays L.) stover and Na+ solution to plots in conventionally managed corn fields in northwestern Ohio. Stover addition increased microbial biomass by 65 ± 12% and respiration by 400-700%. Application of stover with Na+ increased soil detritivore fauna abundance by 51 ± 20% and likely did not affect the other invertebrate guilds. However, soil biological activity was low compared with natural systems in all treatments and was not correlated with instantaneous measures of P accessibility, though cumulative P accessibility over the course of the growing season was correlated with microbial phosphatase activity (slope = 1.01, p < .01) and respiration (slope = 0.42, p = .02). Therefore, in agricultural systems, treatments to stimulate decomposers already in those systems may be ineffective at increasing soil P accessibility in the short term, but in the long term, higher microbial activities can be associated with higher soil P accessibility.


Asunto(s)
Fósforo/análisis , Suelo , Biota , Fertilizantes , Ohio
3.
Sci Adv ; 2(10): e1600842, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27819044

RESUMEN

How will ecological communities change in response to climate warming? Direct effects of temperature and indirect cascading effects of species interactions are already altering the structure of local communities, but the dynamics of community change are still poorly understood. We explore the cumulative effects of warming on the dynamics and turnover of forest ant communities that were warmed as part of a 5-year climate manipulation experiment at two sites in eastern North America. At the community level, warming consistently increased occupancy of nests and decreased extinction and nest abandonment. This consistency was largely driven by strong responses of a subset of thermophilic species at each site. As colonies of thermophilic species persisted in nests for longer periods of time under warmer temperatures, turnover was diminished, and species interactions were likely altered. We found that dynamical (Lyapunov) community stability decreased with warming both within and between sites. These results refute null expectations of simple temperature-driven increases in the activity and movement of thermophilic ectotherms. The reduction in stability under warming contrasts with the findings of previous studies that suggest resilience of species interactions to experimental and natural warming. In the face of warmer, no-analog climates, communities of the future may become increasingly fragile and unstable.


Asunto(s)
Hormigas/fisiología , Bosques , Calentamiento Global , Animales , América del Norte
4.
PLoS One ; 10(8): e0136344, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26292214

RESUMEN

Forest floor food webs play pivotal roles in carbon cycling, but they are rarely considered in models of carbon fluxes, including soil carbon dioxide emissions (respiration), under climatic warming. The indirect effects of invertebrates on heterotrophic (microbial and invertebrate) respiration through interactions with microbial communities are significant and will be altered by warming. However, the interactive effects of invertebrates and warming on heterotrophic respiration in the field are poorly understood. In this study we combined field and common garden laboratory approaches to examine relationships between warming, forest floor food web structure, and heterotrophic respiration. We found that soil animals can overwhelm the effects of warming (to 5 degrees Celsius above ambient) on heterotrophic respiration. In particular, the presence of higher trophic levels and burrowing detritivores strongly determined heterotrophic respiration rates in temperate forest soils. These effects were, however, context-dependent, with greater effects in a lower-latitude site. Without isolating and including the significant impact of invertebrates, climate models will be incomplete, hindering well-informed policy decisions.


Asunto(s)
Cambio Climático , Ecosistema , Suelo , Animales , Respiración de la Célula , Invertebrados/metabolismo , Microbiología del Suelo
5.
Ecology ; 95(1): 9-13, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24649640

RESUMEN

Insect mutualisms can have disproportionately large impacts on local arthropod and plant communities and their responses to climatic change. The objective of this study was to determine if the presence of insect mutualisms affects host plant and herbivore responses to warming. Using open-top warming chambers at Harvard Forest, Massachusetts, USA, we manipulated temperature and presence of ants and Chaitophorus populicola aphids on Populus tremuloides host plants and monitored ant attendance and persistence of C. populicola, predator abundance, plant stress, and abundance of Myzus persicae, a pest aphid that colonized plants during the experiment. We found that, regardless of warming, C. populicola persistence was higher when tended by ants, and some ant species increased aphid persistence more than others. Warming had negligible direct but strong indirect effects on plant stress. Plant stress decreased with warming only when both ants and C. populicola aphids were present and engaged in mutualism. Plant stress was increased by warming-induced reductions in predator abundance and increases in M. persicae aphid abundance. Altogether, these findings suggest that insect mutualisms could buffer the effects of warming on specialist herbivores and plants, but when mutualisms are not intact, the direct effects of warming on predators and generalist herbivores yield strong indirect effects of warming on plants.


Asunto(s)
Hormigas/fisiología , Áfidos/fisiología , Ecosistema , Populus/fisiología , Simbiosis/fisiología , Animales , Escarabajos/fisiología , Calor , Conducta Predatoria , Arañas/fisiología
6.
PLoS One ; 9(2): e88029, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24505364

RESUMEN

Historical records of species are compared with current records to elucidate effects of recent climate change. However, confounding variables such as succession, land-use change, and species invasions make it difficult to demonstrate a causal link between changes in biota and changes in climate. Experiments that manipulate temperature can overcome this issue of attribution, but long-term impacts of warming are difficult to test directly. Here we combine historical and experimental data to explore effects of warming on ant assemblages in southeastern US. Observational data span a 35-year period (1976-2011), during which mean annual temperatures had an increasing trend. Mean summer temperatures in 2010-2011 were ∼ 2.7 °C warmer than in 1976. Experimental data come from an ongoing study in the same region, for which temperatures have been increased ∼ 1.5-5.5 °C above ambient from 2010 to 2012. Ant species richness and evenness decreased with warming under natural but not experimental warming. These discrepancies could have resulted from differences in timescales of warming, abiotic or biotic factors, or initial species pools. Species turnover tended to increase with temperature in observational and experimental datasets. At the species level, the observational and experimental datasets had four species in common, two of which exhibited consistent patterns between datasets. With natural and experimental warming, collections of the numerically dominant, thermophilic species, Crematogaster lineolata, increased roughly two-fold. Myrmecina americana, a relatively heat intolerant species, decreased with temperature in natural and experimental warming. In contrast, species in the Solenopsis molesta group did not show consistent responses to warming, and Temenothorax pergandei was rare across temperatures. Our results highlight the difficulty of interpreting community responses to warming based on historical records or experiments alone. Because some species showed consistent responses to warming based on thermal tolerances, understanding functional traits may prove useful in explaining responses of species to warming.


Asunto(s)
Hormigas/fisiología , Cambio Climático , Temperatura , Animales , Clima , Ecosistema , Calor , Estaciones del Año , Especificidad de la Especie
7.
Integr Comp Biol ; 53(6): 965-74, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23892370

RESUMEN

Physiological intolerance of high temperatures places limits on organismal responses to the temperature increases associated with global climatic change. Because ants are geographically widespread, ecologically diverse, and thermophilic, they are an ideal system for exploring the extent to which physiological tolerance can predict responses to environmental change. Here, we expand on simple models that use thermal tolerance to predict the responses of ants to climatic warming. We investigated the degree to which changes in the abundance of ants under warming reflect reductions in the thermal niche space for their foraging. In an eastern deciduous forest system in the United States with approximately 40 ant species, we found that for some species, the loss of thermal niche space for foraging was related to decreases in abundance with increasing experimental climatic warming. However, many ant species exhibited no loss of thermal niche space. For one well-studied species, Temnothorax curvispinosus, we examined both survival of workers and growth of colonies (a correlate of reproductive output) as functions of temperature in the laboratory, and found that the range of thermal tolerances for colony growth was much narrower than for survival of workers. We evaluated these functions in the context of experimental climatic warming and found that the difference in the responses of these two attributes to temperature generates differences in the means and especially the variances of expected fitness under warming. The expected mean growth of colonies was optimized at intermediate levels of warming (2-4°C above ambient); yet, the expected variance monotonically increased with warming. In contrast, the expected mean and variance of the survival of workers decreased when warming exceeded 4°C above ambient. Together, these results for T. curvispinosus emphasize the importance of measuring reproduction (colony growth) in the context of climatic change: indeed, our examination of the loss of thermal niche space with the larger species pool could be missing much of the warming impact due to these analyses being based on survival rather than reproduction. We suggest that while physiological tolerance of temperature can be a useful predictive tool for modeling responses to climatic change, future efforts should be devoted to understanding the causes and consequences of variability in models of tolerance calibrated with different metrics of performance and fitness.


Asunto(s)
Aclimatación/fisiología , Hormigas/fisiología , Ecosistema , Calentamiento Global , Modelos Biológicos , Animales , Conducta Apetitiva/fisiología , Aptitud Genética/fisiología , Tablas de Vida , Massachusetts , North Carolina , Dinámica Poblacional , Especificidad de la Especie , Análisis de Supervivencia , Temperatura , Árboles
8.
Ecol Evol ; 3(3): 482-91, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23531642

RESUMEN

Climatic warming is altering the behavior of individuals and the composition of communities. However, recent studies have shown that the impact of warming on ectotherms varies geographically: species at warmer sites where environmental temperatures are closer to their upper critical thermal limits are more likely to be negatively impacted by warming than are species inhabiting relatively cooler sites. We used a large-scale experimental temperature manipulation to warm intact forest ant assemblages in the field and examine the impacts of chronic warming on foraging at a southern (North Carolina) and northern (Massachusetts) site in eastern North America. We examined the influence of temperature on the abundance and recruitment of foragers as well as the number of different species observed foraging. Finally, we examined the relationship between the mean temperature at which a species was found foraging and the critical thermal maximum temperature of that species, relating functional traits to behavior. We found that forager abundance and richness were related to the experimental increase in temperature at the southern site, but not the northern site. Additionally, individual species responded differently to temperature: some species foraged more under warmer conditions, whereas others foraged less. Importantly, these species-specific responses were related to functional traits of species (at least at the Duke Forest site). Species with higher critical thermal maxima had greater forager densities at higher temperatures than did species with lower critical thermal maxima. Our results indicate that while climatic warming may alter patterns of foraging activity in predictable ways, these shifts vary among species and between sites. More southerly sites and species with lower critical thermal maxima are likely to be at greater risk to ongoing climatic warming.

9.
Biol Rev Camb Philos Soc ; 88(2): 327-48, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23217156

RESUMEN

The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate.


Asunto(s)
Cambio Climático , Ecosistema , Invertebrados/fisiología , Animales , Conservación de los Recursos Naturales
10.
Ecology ; 93(11): 2305-12, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23236901

RESUMEN

Physiological tolerance of environmental conditions can influence species-level responses to climate change. Here, we used species-specific thermal tolerances to predict the community responses of ant species to experimental forest-floor warming at the northern and southern boundaries of temperate hardwood forests in eastern North America. We then compared the predictive ability of thermal tolerance vs. correlative species distribution models (SDMs) which are popular forecasting tools for modeling the effects of climate change. Thermal tolerances predicted the responses of 19 ant species to experimental climate warming at the southern site, where environmental conditions are relatively close to the ants' upper thermal limits. In contrast, thermal tolerances did not predict the responses of the six species in the northern site, where environmental conditions are relatively far from the ants' upper thermal limits. Correlative SDMs were not predictive at either site. Our results suggest that, in environments close to a species' physiological limits, physiological trait-based measurements can successfully forecast the responses of species to future conditions. Although correlative SDMs may predict large-scale responses, such models may not be accurate for predicting site-level responses.


Asunto(s)
Adaptación Fisiológica/genética , Hormigas/genética , Hormigas/fisiología , Cambio Climático , Ecosistema , Calor , Adaptación Fisiológica/fisiología , Animales , Hormigas/clasificación , Modelos Biológicos , Especificidad de la Especie , Árboles
11.
Ann N Y Acad Sci ; 1249: 18-28, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22329888

RESUMEN

The fossil record tells us that many species shifted their geographic distributions during historic climate changes, but this record does not portray the complete picture of future range change in response to climate change. In particular, it does not provide information on how species interactions will affect range shifts. Therefore, we also need modern research to generate understanding of range change. This paper focuses on the role that species interactions play in promoting or preventing geographic ranges shifts under current and future climate change, and we illustrate key points using empirical case studies from an integrated study system. Case studies can have limited generalizability, but they are critical to defining possible outcomes under climate change. Our case studies emphasize host limitation that could reduce range shifts and enemy release that could facilitate range expansion. We also need improvements in modeling that explicitly consider species interactions, and this modeling can be informed by empirical research. Finally, we discuss how species interactions have implications for range management by people.


Asunto(s)
Cambio Climático , Animales , Conservación de los Recursos Naturales , Ecosistema , Fósiles , Geografía , Dinámica Poblacional , Especificidad de la Especie
12.
Ecol Evol ; 2(12): 3009-15, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23301168

RESUMEN

Population changes and shifts in geographic range boundaries induced by climate change have been documented for many insect species. On the basis of such studies, ecological forecasting models predict that, in the absence of dispersal and resource barriers, many species will exhibit large shifts in abundance and geographic range in response to warming. However, species are composed of individual populations, which may be subject to different selection pressures and therefore may be differentially responsive to environmental change. Asystematic responses across populations and species to warming will alter ecological communities differently across space. Common garden experiments can provide a more mechanistic understanding of the causes of compositional and spatial variation in responses to warming. Such experiments are useful for determining if geographically separated populations and co-occurring species respond differently to warming, and they provide the opportunity to compare effects of warming on fitness (survivorship and reproduction). We exposed colonies of two common ant species in the eastern United States, Aphaenogaster rudis and Temnothorax curvispinosus, collected along a latitudinal gradient from Massachusetts to North Carolina, to growth chamber treatments that simulated current and projected temperatures in central Massachusetts and central North Carolina within the next century. Regardless of source location, colonies of A. rudis, a keystone seed disperser, experienced high mortality and low brood production in the warmest temperature treatment. Colonies of T. curvispinosus from cooler locations experienced increased mortality in the warmest rearing temperatures, but colonies from the warmest locales did not. Our results suggest that populations of some common species may exhibit uniform declines in response to warming across their geographic ranges, whereas other species will respond differently to warming in different parts of their geographic ranges. Our results suggest that differential responses of populations and species must be incorporated into projections of range shifts in a changing climate.

13.
Biol Lett ; 6(2): 274-7, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-19923135

RESUMEN

The hygric hypothesis postulates that insect discontinuous gas exchange cycles (DGCs) are an adaptation that reduces respiratory water loss (RWL), but evidence is lacking for reduction of water loss by insects expressing DGCs under normal ecological conditions. Larvae of Erynnis propertius (Lepidoptera: Hesperiidae) naturally switch between DGCs and continuous gas exchange (CGE), allowing flow-through respirometry comparisons of water loss between the two modes. Water loss was lower during DGCs than CGE, both between individuals using different patterns and within individuals using both patterns. The hygric cost of gas exchange (water loss associated with carbon dioxide release) and the contribution of respiratory to total water loss were lower during DGCs. Metabolic rate did not differ between DGCs and CGE. Thus, DGCs reduce RWL in E. propertius, which is consistent with the suggestion that water loss reduction could account for the evolutionary origin and/or maintenance of DGCs in insects.


Asunto(s)
Adaptación Biológica/fisiología , Evolución Biológica , Mariposas Diurnas/fisiología , Transporte Respiratorio/fisiología , Pérdida Insensible de Agua/fisiología , Análisis de Varianza , Animales , Colombia Británica , Metabolismo Energético/fisiología , Larva/fisiología , Análisis de Regresión
14.
Proc Natl Acad Sci U S A ; 106(27): 11160-5, 2009 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-19549861

RESUMEN

There is a pressing need to predict how species will change their geographic ranges under climate change. Projections typically assume that temperature is a primary fitness determinant and that populations near the poleward (and upward) range boundary are preadapted to warming. Thus, poleward, peripheral populations will increase with warming, and these increases facilitate poleward range expansions. We tested the assumption that poleward, peripheral populations are enhanced by warming using 2 butterflies (Erynnis propertius and Papilio zelicaon) that co-occur and have contrasting degrees of host specialization and interpopulation genetic differentiation. We performed a reciprocal translocation experiment between central and poleward, peripheral populations in the field and simulated a translocation experiment that included alternate host plants. We found that the performance of both central and peripheral populations of E. propertius were enhanced during the summer months by temperatures characteristic of the range center but that local adaptation of peripheral populations to winter conditions near the range edge could counteract that enhancement. Further, poleward range expansion in this species is prevented by a lack of host plants. In P. zelicaon, the fitness of central and peripheral populations decreased under extreme summer temperatures that occurred in the field at the range center. Performance in this species also was affected by an interaction of temperature and host plant such that host species strongly mediated the fitness of peripheral individuals under differing simulated temperatures. Altogether we have evidence that facilitation of poleward range shifts through enhancement of peripheral populations is unlikely in either study species.


Asunto(s)
Migración Animal , Mariposas Diurnas/crecimiento & desarrollo , Clima , Animales , Metabolismo Basal , Tamaño Corporal , Mariposas Diurnas/anatomía & histología , Dinámica Poblacional , Análisis de Supervivencia
15.
Oecologia ; 157(4): 583-92, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18648857

RESUMEN

To predict changes in species' distributions due to climate change we must understand populations at the poleward edge of species' ranges. Ecologists generally expect range shifts under climate change caused by the expansion of edge populations as peripheral conditions increasingly resemble the range core. We tested whether peripheral populations of two contrasting butterflies, a small-bodied specialist (Erynnis propertius) and a large-bodied generalist (Papilio zelicaon), respond favorably to warmer conditions. Performance of populations related to climate was evaluated in seven peripheral populations spanning 1.2 degrees latitude (160 km) using: (1) population density surveys, an indirect measure of site suitability; and (2) organismal fitness in translocation experiments. There was evidence that population density increased with temperature for P. zelicaon whose population density declined with latitude in 1 of 3 sample years. On the other hand, E. propertius showed a positive relationship of population density with latitude, apparently unrelated to climate or measured habitat variables. Translocation experiments showed increased larval production at increased temperatures for both species, and in P. zelicaon, larval production also increased under drier conditions. These findings suggest that both species may increase at their range edge with warming but the preference for core-like conditions may be stronger in P. zelicaon. Further, populations of E. propertius at the range boundary may be large enough to act as sources of colonists for range expansions, but range expansion in this species may be prevented by a lack of available host plants further north. In total, the species appear to respond differently to climate and other factors that vary latitudinally, factors that will likely affect poleward expansion.


Asunto(s)
Mariposas Diurnas/fisiología , Clima , Ecosistema , Aclimatación , Altitud , Animales , Colombia Británica , Densidad de Población , Dinámica Poblacional , Especificidad de la Especie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...